Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons.
نویسندگان
چکیده
The effects of zinc oxide nanoparticles (nano-ZnO) on the properties of voltage-dependent sodium, potassium currents and evoked action potentials were studied in acutely isolated rat hippocampal CA3 pyramidal neurons at postnatal ages of 10-14 days rats using the whole-cell patch-clamp technique. The results indicated that: (1) in the present of final concentration of 10(-4)g/ml nano-ZnO, the current-voltage curve of sodium current (I(Na)) was decreased, and the peak amplitudes of I(Na) were increased considerably from -50 to +20mV (p<0.05). Meanwhile, the inactivation and the recovery from inactivation of I(Na) were also promoted by the nano-ZnO solution (10(-4)g/ml) (p<0.01). However, the steady-state activation curve of I(Na) was not shifted by the nano-ZnO. (2) The amplitudes of transient outward potassium current (I(A)) were increased by the nano-ZnO solution (10(-4)g/ml), while the current-voltage curve of delayed rectifier potassium current (I(K)) was significantly increased from +20 to +90mV (p<0.05). However, it is apparent that the nano-ZnO solution did not shift the steady-state activation curve of I(A) and I(K), and neither had significant effects on the inactivation and the recovery from inactivation of I(A). (3) Peak amplitude and overshoot of the evoked single action potential were increased and half-width was diminished in the presence of the 10(-4)g/ml nano-ZnO solution (p<0.05). Simultaneously, a prolonged depolarizing current injection enhanced (p<0.05) repetitive firing evoked firing rate. These results suggested that 10(-4)g/ml nano-ZnO solution can lead to an enhancement in the current amplitudes of I(Na) and I(K) by increasing the opening number of sodium channels, delaying rectifier potassium channels, and enhancing the excitability of neurons, which lead to Na(+) influx and the accumulation of intracellular Na(+), as well as K(+) efflux plus the loss of cytoplasmic K(+). These may disturb the ionic homeostasis and the physiological functions of neurons.
منابع مشابه
Time course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus
Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...
متن کاملTime course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus
Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...
متن کاملThe effect of prenatal restraint stress on the number and size of neurons in the rat hippocampal subdivisions
Animal studies have shown that prenatal stress is able to induce long-lasting neurobiological and behavioral alterations in adult offspring. In spite of the facts that hippocampus is sensitive to early developmental influences and its known functional importance in learning and memory, few data are available on the effect of prenatal stress on the structure of hippocampus. Therefore, this study...
متن کاملThe effect of prenatal restraint stress on the number and size of neurons in the rat hippocampal subdivisions
Animal studies have shown that prenatal stress is able to induce long-lasting neurobiological and behavioral alterations in adult offspring. In spite of the facts that hippocampus is sensitive to early developmental influences and its known functional importance in learning and memory, few data are available on the effect of prenatal stress on the structure of hippocampus. Therefore, this study...
متن کاملAntibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture
Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurotoxicology
دوره 30 2 شماره
صفحات -
تاریخ انتشار 2009